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A highly regioselective hydrophosphination of terminal alkynes
with tetraphenyldiphosphine in the presence of palladium catalyst
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Abstract—A novel palladium-catalyzed hydrophosphination of alkynes with tetraphenyldiphosphine takes place regioselectively to
provide vinylic phosphines, which undergo air-oxidation during workups, affording the corresponding vinylphosphine oxides in
good yields.
� 2007 Elsevier Ltd. All rights reserved.
A number of transition-metal-catalyzed addition reac-
tions with alkyne based on the cleavage of inter-element
linkages,1 such as B–B,2 Si–Si,3 Ge–Ge,4 Sn–Sn,5 S–S,6

and Se–Se6 bonds, provide a useful tool to a variety of
vicinally bifunctionalized alkenes, Eq. 1.
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In 1991, we have revealed that organic disulfides and
diselenides add to terminal alkynes stereoselectively in
the presence of a palladium catalyst to afford the corre-
sponding vicinal bisthiolated and bisselenated alkenes,
respectively, in excellent yields.6 Since organic sulfur
and selenium compounds were widely believed to be rep-
resentative catalyst poisons, this finding has opened up a
new field of transition-metal-catalyzed addition reac-
tions of group 16 heteroatom compounds with alkynes.7

In sharp contrast, group 15 inter-element compounds
such as diphosphines (R2P–PR2) have not been featured,
despite organic phosphorus compounds being syntheti-
cally useful intermediates.8 Thus, we examined the reac-
tion of tetraphenyldiphosphine (Ph2P–PPh2) with
alkynes in the presence of several catalysts. Among the
catalysts examined, divalent and zero-valent palladium
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complexes, such as Pd(OAc)2 and Pd(PPh3)4, exhibit
catalytic activity toward the addition reactions to alky-
nes. Surprisingly, however, the desired bisphosphin-
ation9 of alkynes did not occur, and instead, novel
hydrophosphination10–12 took place selectively. In this
Letter, we wish to report a novel palladium-catalyzed
hydrophosphination of alkynes with tetraphenyldiphos-
phine, Eq. 2.
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When the reaction of alkyne (0.3 mmol) with tetra-
phenyldiphosphine (0.1 mmol) in the presence of palla-
dium diacetate (5 mol %) in degassed C6D6 (0.6 mL)
was conducted at 80 �C for 18 h, vinylphosphine (2)
was formed regioselectively, which led to the corre-
sponding vinylphosphine oxide (3) after usual workups
under the atmosphere. In this reaction, neither bis-
phosphination product (1) nor regioisomeric hydropho-
sphination product (4) was obtained.

The vinylic area of the 1H NMR spectra of the product
formed by the palladium-catalyzed reaction of 1-octyne
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Table 1. Pd(OAc)2-catalyzed hydrophosphination of alkynes with
(Ph2P)2

R (Ph2P)2
Pd(OAc)2 5 mol% R

Ph2P

(O) R

Ph2P
O

+
C6D6, 80 °C, 18 h

3 equiv 0.1 mmol
3a-f

Entry Alkyne Product Yielda (%)

1 nC6H13

nC6H13

Ph2P
O

3a (58)

2
Ph2P

O
3b

57

3b Ph
Ph

Ph2P
O

3c 68(66)

4

Ph2P
O

3d 55

5c
NC Ph2P

O

NC 3e
79(50)

6 Cl Ph2P
O

Cl 3f
78(75)

7 No reaction

a 1H NMR (isolated) yield.
b Alkyne (5 equiv).
c For 8 h.

Figure 1. 1H NMR Spectra (vinylic area) of vinylphosphine and its
oxide.
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Scheme 1. A possible reaction pathway for hydrophosphination of
alkyne.
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with tetraphenyldiphosphine is shown in Figure 1 (the
upper spectrum: the resulting mixture after 18 h; the low-
er spectrum: the product obtained after workups under
the atmosphere). These spectra show that the initial
products are a mixture of vinylic phosphine (2a) and its
oxide (3a), and the following air-oxidation of 2a leads
to the formation of vinylic phosphine oxide (3a)
predominantly.

Table 113 represents the results of the Pd(OAc)2-cata-
lyzed hydrophosphination of terminal alkynes with
(Ph2P)2. 1-Octyne and 5-methyl-1-hexyne underwent
the palladium(0)-catalyzed hydrophosphination, provid-
ing the corresponding vinylic phosphine oxide (3a and
3b), respectively, with excellent regioselectivity (entries
1 and 2). In the case of aromatic alkynes such as phenyl-
acetylene and p-methylphenylacetylene, the hydropho-
sphination took place successfully (entries 314 and 4).
Functionalities such as cyano and chloro groups, are
tolerant of the reaction, affording the corresponding
hydrophosphination products (3e and 3f) in good yields
(entries 515 and 6). On the other hand, internal alkynes
did not undergo the desired hydrophosphination (the
starting alkynes were recovered) (entry 7).

Although the reaction pathway for the present hydro-
phosphination of alkynes requires further detailed
mechanistic investigations,16 a possible catalytic cycle
is shown in Scheme 1: (1) the oxidative addition of tet-
raphenyldiphosphine to the low-valent palladium(0)
complex generated in situ;17,18 (2) the coordination of al-
kyne to the palladium species followed by phosphino-
palladation to afford a vinylpalladium intermediate
(A); (3) the coordination of alkyne and the following
reductive elimination to afford a vinylphosphine (B);19

(4) regeneration of the palladium catalyst by the elimi-
nation of alkynylphosphine20 (D) from the alkynylpalla-
dium intermediate (C).
To clarify the hydrogen source of the present hydro-
phosphination of alkynes, we examined the palla-
dium-catalyzed hydrophosphination using deuterized
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phenylacetylene (98 at.% D), which provided the vinyl-
phosphine oxide bearing two deuteriums on the termi-
nal vinylic carbon (Eq. 3). Deuterium in C6D6 was not
incorporated into the product. This result strongly sug-
gests that the hydrogen source of the hydrophosphin-
ation comes from alkynic hydrogen.21 This is also
supported by the fact that the hydrophosphination of
internal alkynes did not proceed at all.
Ph D (Ph2P)2
Pd(OAc)2 5 mol% [O] Ph

Ph2P
O

D

D

C6D6, 80 ˚C , 18 h
(98 atom% D)

ð3Þ
In summary, we have developed the highly regioselective
hydrophosphination of terminal alkynes with tetra-
phenyldiphosphine catalyzed by palladium diacetate,
which affords the corresponding 2-(diphenylphosph-
ino)-1-alkenes in good yields. A detailed mechanistic
study is now under investigation.
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